
Performance Monitoring Backend
and Frontend Using Micrometer

Clint Checketts - @checketts
Church of Jesus Christ of Latter-day Saints

October 7–10, 2019
Austin Convention Center

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Presentation Topics
• How can I use Micrometer?
• How can I control the number of metrics I create (due

to costs for my metric platform)
• I’m currently using X for metrics, how can I use

Micrometer to keep using X while transitioning to
hot new Y?

• How can I ensure my metrics include common
information of that cluster/region/team/etc?

• And more!

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

App

Micrometer

Prometheus
(or other Metrics system)

Grafana
(Dashboard)

Alertmanager
(Notifications)

Demo #1 via Docker

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

What if I want to track by cluster or region?
How about uri or response code?
Or if I want to add metadata to a metric upon collection?

Dimensional Metrics versus Hierarchical
Hierarchical:
server1.http.requests = 10

Dimensional:
http_requests{server=“server1”} 10

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Hierarchical:
server1.http.requests = 10
us-east.blue.server1.http.requests.200.users = 10

Dimensional:
http_requests{server=“server1”} 10
http_requests{server=“server1”, region=“us-east”,
cluster=“blue”, status=“200”, uri=“users”} 10

Dimensional Metrics versus Hierarchical

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Monitoring for errors
versus

understanding the system

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Observability:
1.Logging
2.Metrics
3.Tracing

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Observability Definitions:
1. Logging

• Detailed information about individual actions
2. Metrics

• Aggregate information about application features
3. Tracing

• Sampled information across multiple services

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Observability Libraries:
1. Logging

• SLF4J, Log4J, Logback, JUL, etc
2. Metrics

• Micrometer, Prometheus, Drop Wizard Metrics,
etc

3. Tracing
• Zipkin

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

• Lots of libraries may need to log
• They should use a logging facade like SLF4J
• Shouldn’t be tie users to a specific implementation

• Some log messages are very detailed and should allow muting
• The user may want to log to multiple destinations:

• to console, to a file, and to a centralized logging system
• User may have cross cutting metadata they need to add to all messages

Key Logging Features

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Micrometer Logging Similarities

Facade MeterRegistry

Muting

Multiple Destinations

Common Metadata

MeterFilters

CompositeRegistry

CommonTags

Logging Concepts Micrometer Equivalents

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Meter - A measured ‘thing’
Examples: counters, timers, gauges, etc.

MeterRegistry - Meter store abstraction
Tag - A meter dimension
Metric - An individual measurement

Examples: Each timer by default creates 3 metrics: count,
duration, max.

Micrometer Terms

Demo #2
Micrometer without Spring

in Kotlin

Simple, Logging, Composite Meter Registry
MeterFilters

Counter, Timer, Gauge

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

http_request 10

http_request{uri=“users”, method=“GET”} 4
http_request{uri=“user/{id}”, method=“GET”} 3
http_request{uri=“user/{id}”, method=“PUT”} 3

http_request{uri=“user/1”, method=“GET”} 1
http_request{uri=“user/2”, method=“GET”} 1
http_request{uri=“user/3”, method=“GET”} 1
http_request{uri=“user/😳 ”, method=“GET”} 1

Metric Cardinality (How many)

👍

💣

👍

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Rapid increase of metrics, typically
due to storing a unique id or
similar value as a tag

Consequences
• Increased memory usage
• Increased monitoring system load
• Increased monitoring system costs

Cardinality Explosion

💣

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

• Don’t use user input (directly)
• Use a MeterFilter to

• Disable noisy meters
• Rewrite high cardinality tags
• Cap your total meter count

• Drop unwanted metrics at collection (Prometheus ‘relabeling’)

How to keep tags under control

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

1.Built into Spring
2.Autowired by Spring
3.Integration provided by Micrometer
4.Integration provided by the library
5.Custom stuff!

Spring Micrometer Integration

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

start.spring.io:
Add ‘web’
Add ‘actuator’)

Add Prometheus Registry (not on initializer)

Setting up Spring with Micrometer (Prometheus)

dependencies {
 implementation("org.springframework.boot:spring-boot-starter-actuator")
 implementation("org.springframework.boot:spring-boot-starter-web")

 implementation("io.micrometer:micrometer-registry-prometheus:latest.release")
}

http://start.spring.io

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Enable Prometheus Actuator

management:
 endpoints:
 web:
 exposure:
 include: info,health,prometheus,metrics

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

System (File system, CPU, Uptime)
JVM (Heap, Class Loader, Garbage Collection)
HTTP Requests (Status, URI, Duration)
Tomcat Connections (Threads, Bytes Sent, Session, Errors)
Logging

sum_over_time(logback_events{level=“error”}[1h]) >
 sum_over_time(logback_events{level=“error”}[1h]) offset 1d * 1.5

‘Built in’ Metrics

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Powered by Micrometer
Consider it a compatibility shim

The Metrics Actuator
{
 "name":"http.server.requests",
 "description":null,
 "baseUnit":"seconds",
 "measurements":[
 {
 "statistic":"COUNT",
 "value":22501.0
 },
 {
 "statistic":"TOTAL_TIME",
 "value":30048.789975875996
 },
 {
 "statistic":"MAX",
 "value":0.0
 }
],
 "availableTags":[
 {
 "tag":"method",
 "values":[
 "GET"
]
 },

http://localhost:8080/actuator/metrics/http.server.requests

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Not built in by default due custom
‘Health States’ being available.

See https://micrometer.io/docs/
guide/healthAsGauge

Keep them fast since gauges are
checked at metric collection
time.

Converting Health Checks To Metrics
@FunctionalInterface
public interface HealthIndicator {

Health health();
}

// healthIndicators: Map<String, HealthIndicator>
for ((key, value) in healthIndicators) {
 val tagKey = Tags.of("name", key)
 registry.gauge("health.indicator", tagKey,
this) {
 val status = value.health().status
 when (status.code) {
 "UP" -> 1.0
 "DOWN" -> -1.0
 "OUT_OF_SERVICE" -> -2.0
 "UNKNOWN" -> -3.0
 else -> -3.0
 }
 }
}

https://micrometer.io/docs/guide/healthAsGauge
https://micrometer.io/docs/guide/healthAsGauge
https://micrometer.io/docs/guide/healthAsGauge

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Create via RestBuilder (To receive automatic Micrometer support see
MetricsClientHttpRequestInterceptor)

Use URL templating (Avoid Cardinality Explosion!)

Add RestTemplate

private val restTemplate = restTemplateBuilder.build()

private fun fetchUsers() : List<User>? {
 val shouldFail = Random.nextInt(1,5)
 return restTemplate.getForObject("http://localhost:8083/users/{shouldFail}", shouldFail)
}

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Allows adding metrics to MeterRegistry

Binder Interface
public interface MeterBinder {
 void bindTo(@NonNull MeterRegistry registry);
}

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Cache Manager Support (@Cacheable)

Many Cache Binders (Guava, Caffeine, EhCache, etc):

Add Caching

val userCache = CaffeineCacheMetrics.monitor(meterRegistry,
 Caffeine.newBuilder().maximumSize(1).build<String, List<User>>(),
 “users")

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Includes Micrometer support directly

Circuit Breaker State
Success/Failure rates
And much more!

Add Resilience4J

Demo #3

Micrometer with Spring!

Binders
Config Properties

Percentiles
actuator/metrics and actuator/prometheus

Health Checks

Unless otherwise indicated, these slides are © 2013-2019 Pivotal Software, Inc. and licensed under a Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

No built in support for front end metrics
Potential for an actuator

Front End Metrics

Demo #4

Custom metrics

‘Browser’ metrics

 More Micrometer!

Code examples at:
https://github.com/checketts/micrometer-springone-2019

#springone@s1p

Real-Time Performance Analysis of Data-
Processing Pipelines with Spring Cloud Data
Flow, Micrometer

Wednesday 
4:20pm–5:30pm

Christian Tzolov and Sabby Anandan

Metrics for the Win: Using
Micrometer to Understand
Application Behavior

Wednesday 
4:20pm–5:30pm

Erin Schnabel

